

ASX Announcement 14 September 2010

SIGNIFICANT HEMATITE AND MAGNETITE IRON MINERALISATION INTERSECTED AT MAYOKO

Key Points:

- Phase 1 program of 18 diamond drill holes for 3,687m completed.
- Head assay results received for 8 of the first 9 holes with significant intersections including:
 - 42m at 55.1% Fe of in-situ supergene hematite from surface in MKDD003, including 22m at 57.4% Fe from surface;
 - 20m at 56.1% Fe of transported supergene hematite from 4m in MKDD001, including 14m at 59% Fe from 8m;
 - 38m at 38.1% Fe of enriched banded iron formation ("BIF") from 20m in MKDD006, including 22m at 42.2% Fe from 20m;
 - 151m at 36.1% Fe of fresh BIF from 251m in MKDD002, and
 - 131m at 32.4% Fe of fresh BIF from 92m in MKDD007.
 - Assay results confirm supergene hematite cap and enriched BIF extending up to 40m and 75m below surface respectively.
 - Drilling shows additional supergene hematite present outside of previously reported Inferred Mineral Resource including 20m at 56.1% Fe from 4m in drill hole MKDD001.
 - The enriched and fresh BIF lenses vary from 50 to 200m thick and extend over a strike length of >6km.
 - Further ore characterisation work is in progress including head assay, mineralogy, screen size and Davis Tube Recovery analyses.

Australian resources and investment company, Cape Lambert Resources Limited (**ASX: CFE**) ("Cape Lambert" or the "Company") is pleased to announce assay results from eight (8) of the first nine (9) diamond drill holes from the recently completed drilling program at its 80% owned Mayoko Iron Ore Project ("Mayoko"), located in the Republic of Congo (refer Figure 1).

Cape Lambert is an Australian domiciled, mineral investment company. Its current investment portfolio is geographically diverse and consists of mineral assets and interests in several mining and exploration companies.

The Company continues to focus on investment in early stage resource projects and companies, primarily in iron ore, copper and gold. Its "hands on" approach is geared to add value and position assets for development and/or sale.

The Board and management exhibit a strong track record of delivering shareholder value.

Australian Securities Exchange Code: CFE

Ordinary shares 625,759,256

Board of Directors

Tony SageExecutive ChairmanTim TurnerNon-executive DirectorBrian MaherNon-executive DirectorRoss LevinNon-executive Director

Eloise von Puttkammer Company Secretary

Key Projects and Interests

Marampa Iron Ore Project Mayoko Iron Ore Project Pinnacle Group Assets Sappes Gold Project Corvette Resources Limited

Cape Lambert Contact

Tony Sage Executive Chairman Phone: +61 8 9380 9555

Australian Enquiries

Professional Public Relations David Tasker Phone: +61 8 9388 0944 Mobile: +61 433 112 936 Email: david.tasker@ppr.com.au

UK Enquiries

Conduit Public Relations Jos Simson Phone: +44 (0)20 7429 6603 Mobile: +44 (0)7899 870 450

CapeLambertResourcesLimitedPO Box 144, West Perth Western Australia 6872Phone: +61 8 9380 9555Facsimile: +61 8 9380 9666

ABN 71 095 047 info@capelam.com.au www.capelam.com.au

7 920

Key Findings

- The supergene hematite results from the 2010 drilling generally confirm the iron grades from the 1975 shallow surface drilling by earlier explorers, which forms the basis for the current 2008 Inferred Mineral Resource of 33.1 million tonnes at 55.5% Fe. Drill holes MKDD001 and MKDD002, however demonstrate that additional transported, supergene material exists outside of the 1975 drilling and 2008 resource thereby enabling the resource size to be increased.
- The hematite iron mineralisation is associated with low phosphorous and sulphur.
- The primary magnetite banded iron formation ("BIF") Fe grades are typically higher at 32 36% than other magnetite projects.
- The primary magnetite BIF lenses vary from 50 to 200m thick and extend to more than 300m below surface over the full 7km strike length of the two prospects.

Drilling

The phase 1 diamond drilling program commenced at Mayoko in December 2009 and was completed in mid-August 2010. The objective of this program was to test the Mt Lekoumou and Mt Mipoundi prospects (refer Figure 2), which form a 7km long magnetic anomaly. Diamond drilling was carried out on wide-spaced traverses from surface to 300m depth to confirm the geology, structure and characteristics of the oxide and fresh iron mineralisation.

A total of 3,687m in 18 drill holes (MKDD001 – 018) was completed. The holes were drilled on 8 cross sections spaced at 800m and on 2 cross sections spaced at 400m (refer Figure 2).

Geology

The Mayoko exploration licence is approximately 1000km² in area and covers Archean rocks of the Congo Craton. The main rock types underlying the licence consist of granitic gneiss, amphibolite with units of BIF, and intrusive granitoids.

The known BIF units are lens-shaped and appear concordant with the enclosing amphibolite and amphibolite schist formations. Local contacts between the BIF lenses and amphibolite vary from gradational to sharp. The fresh BIF units are characterised by distinct millimetre-scale banding of silica-rich and magnetite-rich layers.

Geological mapping and drilling demonstrates the BIF lenses dip steeply to the south-east and strike to the north-east.

At Mt Lekoumou there is a well-developed supergene hematite cap up to 40m thick; this cap thins to the north east. Semi-consolidated and cemented colluvial iron mineralisation overlies the *in-situ* iron cap and extends down the flanks of the ridges (refer Figures 3 and 4).

Underlying the supergene hematite is variably oxidised and enriched BIF extending from 25 to 75m below surface.

Calibrated magnetic susceptibility measurements and geological logging confirm that hematite/goethite are the dominant iron minerals in the supergene hematite and enriched BIF zones, with magnetite the dominant iron mineral in fresh rock.

Assay Results

Final assay results have now been received for the drill holes MKDD001-004 and MKDD 006-009 (total meterage 1,871m) from the phase 1 program. Drill hole and assay details are summarised in Table 1. The drill results confirm 3 iron ore groups based on weathering state, mineralogy and grade as follows:

- Supergene hematite in-situ (55-60% Fe) and transported (40-60% Fe);
- BIF weathered and enriched (30-45% Fe); and
- BIF fresh (30-36% Fe).

All these groups have low phosphorus and sulphur contents.

Further Work

Characterisation work including head assay, mineralogy, screen sizing, QEMSCAN and Davis Tube Recovery analyses are in progress. This work is expected to be completed in October 2010, and will form the basis for implementing follow-up drilling, further metallurgical test work and flowsheet development.

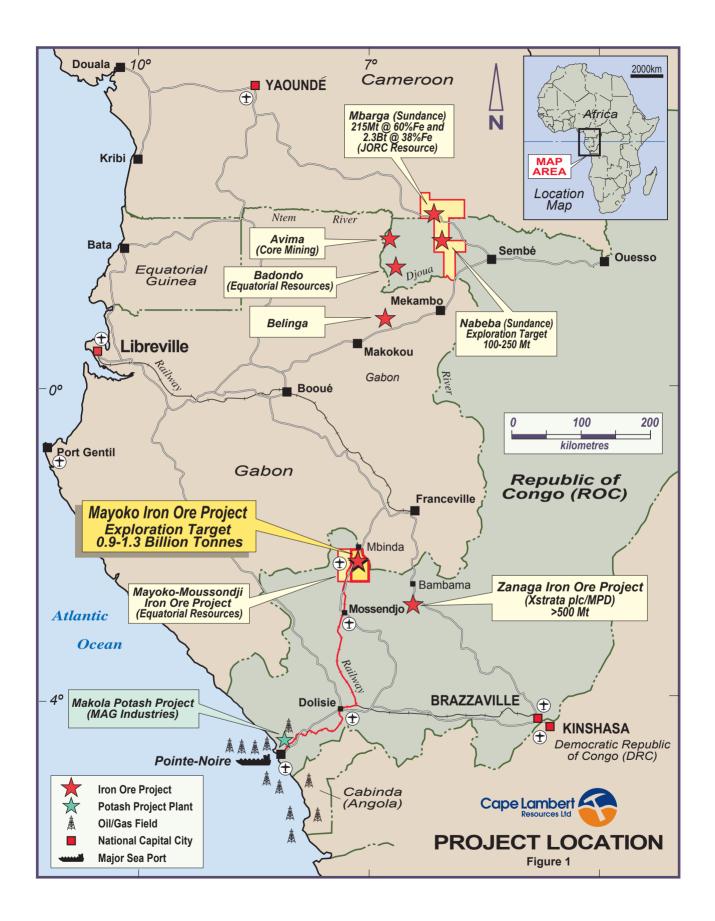
Cape Lambert Executive Chairman, Mr Tony Sage said "these initial drill results indicate that the hematite cap DSO potential was of better iron grade and larger than initially thought, which improves the prospects of early cashflow from an initial DSO development".

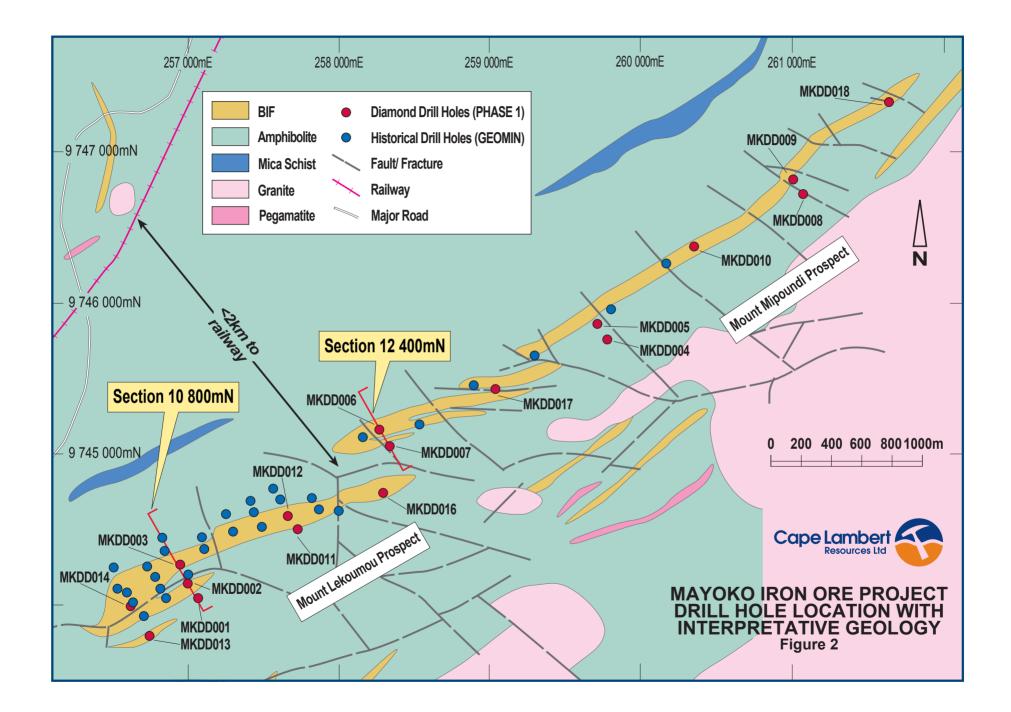
Mr Sage further added "the grade of the underlying magnetite was typically higher than other magnetite projects at 34-36% Fe. For example the 10 billion tonne JORC resource Tonkolili project in Sierra Leone, West Africa has a magnetite grade of approximately 30% Fe, and 25% of that project is in the process of being sold to major Chinese steel group, Shandong Iron & Steel for US\$1.5 billion, valuing the project at US\$6.0 billion."

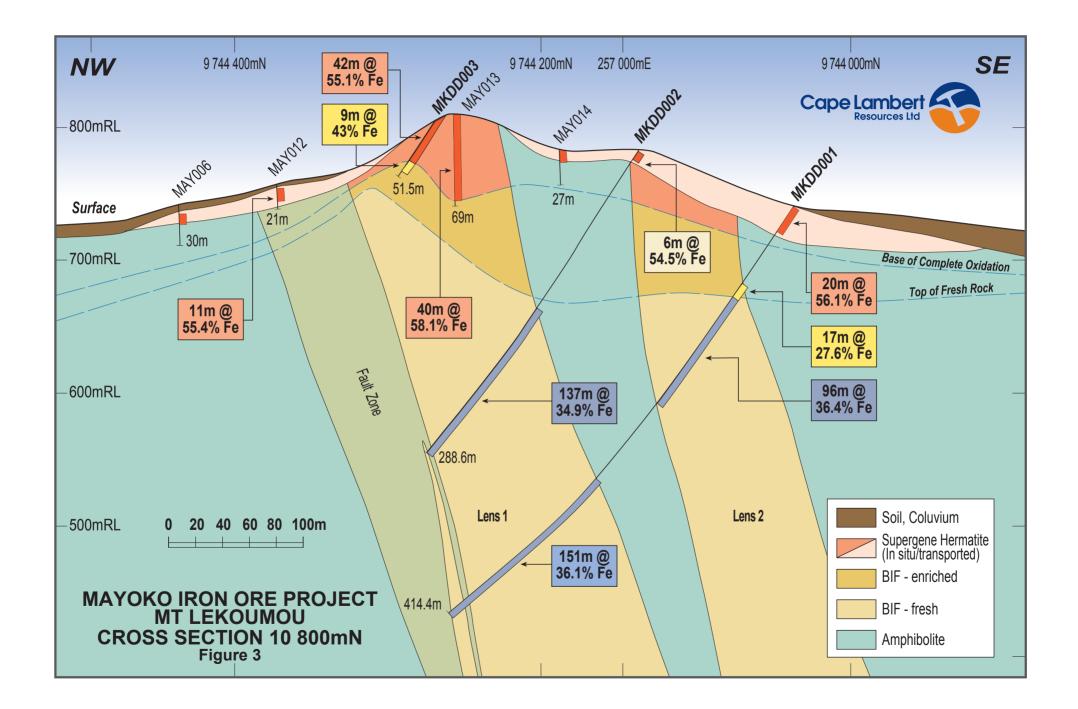
Yours faithfully Cape Lambert Resources Limited

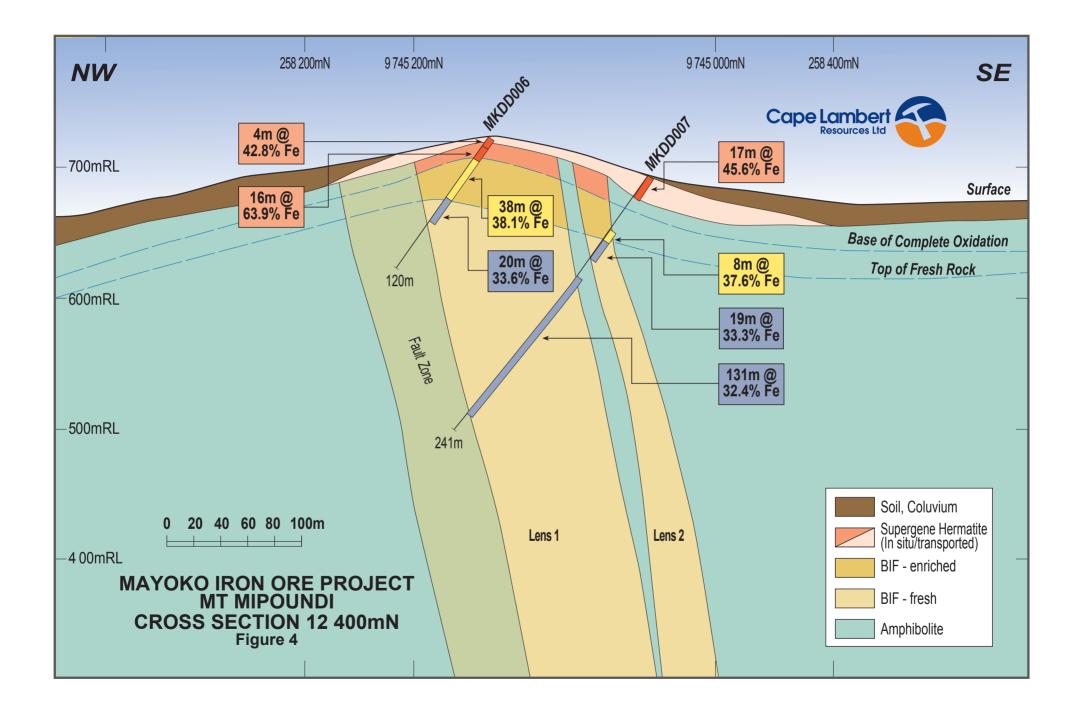
Tony Sage Executive Chairman

Competent Person Statement


The contents of this report relating to exploration and mineral resources are based on information compiled by Mr Kim Bischoff, a Member of the Australasian Institute of Mining and Metallurgy. Mr Bischoff is a consultant to Cape Lambert has sufficient experience relevant to the styles of mineralisation and the deposit under consideration and to the activity he is undertaking to qualify as a Competent Person, as defined in the 2004 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Bischoff consents to the inclusion in this report of the matters compiled by him in the form and context in which they appear.




Table 1: Mayoko Diamond Drill Assay Results


Hole Number	Collar Location			Hole Details			Significant Intersection								
	Easting	Northing	RL	Dip	Azi.	Hole Length	From	То	Length	Fe (Total)	SiO ₂	Al ₂ O ₃	Р	LOI	Lithology
	UTM W	/GS84 Zone 33	3SH			m	m	m	m	%	%	%	%	%	
MKDD001	257,059	9,744,034	737.4	-55	330	414.4	0	4	4	41.0	18.1	12.4	0.07	9.6	Supergene hematite – transported
							4	24	20	56.1	8.6	5.2	0.07	5.3	Supergene hematite – transported
							67	84	17	27.6	45.0	5.9	0.05	1.6	BIF – enriched
							84	180	96	35.4	43.4	1.0	0.06	-0.6	BIF – fresh
							251	402	151	36.1	43.5	1.2	0.06	-0.9	BIF – fresh
MKDD002	256,996	9,744,132	780.3	-55	330	288.6	0	6	6	54.5	4.5	8.8	0.08	8.1	Supergene hematite – transported
							141	278	137	34.9	44.6	1.5	0.06	-0.8	BIF - fresh
MKDD003	256,933	9,744,271	805.9	-55	330	51.5	0	42	42	55.1	9.8	3.4	0.08	6.9	Supergene hematite – in-situ
							42	51.5	9.5	43.0	36.3	0.5	0.05	1.1	BIF – enriched
MKDD004	259,775	9,745,742	720.9	-55	330	299.9	190	264	74	31.0	46.4	2.7	0.06	-0.1	BIF – fresh
MKDD005	259,715	9,745,845	737.4	-55	330	267.5				Head assays in progress					
MKDD006	258,269	9,745,149	719.7	-55	330	120.6	0	4	4	42.8	14.9	11.6	0.08	11.3	Supergene hematite – in-situ
							4	20	16	53.9	12.4	4.1	0.08	5.7	Supergene hematite – in-situ
							20	58	38	38.1	39.6	3.3	0.06	1.9	BIF – enriched
							58	78	20	33.6	46.5	1.7	0.06	-0.4	BIF – fresh
MKDD007	258,329	9,745,046	688.9	-55	330	241.6	0	17	17	45.9	16.5	8.6	0.08	8.3	Supergene hematite – transported
							48	56	8	37.6	37.7	3.9	0.09	3.6	BIF – enriched
							56	75	19	33.3	42.2	2.9	0.07	0.9	BIF – fresh
							92	223	131	32.4	44.4	2.4	0.06	0.0	BIF – fresh
MKDD008	261,070	9,746,697	731.2	-55	330	298.77	176	276	100	32.7	46.0	1.8	0.06	-0.7	BIF – fresh
MKDD009	261,012	9,746,799	737.5	-55	330	155.7	34	46	12	31.0	45.9	5.7	0.05	2.7	BIF – enriched
							46	138	92	33.3	45.9	1.7	0.06	-0.6	BIF - Fresh

Notes: Collars surveyed by Total Station instrument. Lower cutoffs: Supergene hematite 50% Total Fe, Enriched BIF 30% T Fe, BIF – fresh 20% T Fe. Minimum intersection of 4m and maximum internal dilution of 8m downhole. All samples half diamond core HQ in weathered rock, NQ in fresh rock. 2m composite samples in weathered rock and 4m samples in fresh rock. Assays by UltraTrace Laboratories, Perth, Western Australia. Downhole lengths do not represent true widths.

